WORKSHEET 3.05 - SITUATION FIVE

Compile existing data and determine existing site imperviousness (I_{EXIST}). For the purposes of these calculations, site area (A_{SITE}) is defined as the entire parcel. A_{EXIST} represents the actual amount of existing impervious cover on the site.

A _{SITE}	=	acres
A _{EXIST} structo	ures =	acres
parkin	ng lot =	acres
roadw	/ay =	acres
other	=	acres
Total A _{EXIST}	=	acres
I _{EXIST}	=	(Total A _{EXIST} ÷ A _{SITE}) x 100
I _{EXIST}	=	% (expressed in whole numbers)
A _{EXIST} x 0.10) =	acres

Compile post-development data and determine post-development project imperviousness ($I_{PROJECT}$). For the purposes of these calculations, project area ($A_{PROJECT}$) is defined as the area of proposed impervious cover associated with this project (additional impervious cover and impervious cover that will replace existing impervious cover). A_{POST} represents the actual amount of impervious cover on the site once the proposed development is complete.

A _{PROJECT} :	structures	=		acres
	parking lot	=		acres
	roadway	=		acres
	other	=		acres
Total A _{PROJECT}		=	-	acres
Total A _{PROJECT}		\leq	A _{EXIST} x 0.10	
		\leq		

If $I_{\text{EXIST}} > 16\%$ and $A_{\text{PROJECT}} \leq [0.1 \text{ x } A_{\text{EXIST}}]$, proceed with calculation of pollutant loadings. Otherwise, refer to Section 3.4 of the Manual for correct development situation determination.

Calculate the pre and post-development pollutant loadings for the site using the Simple Method.

L $P \times P_{\perp} \times [0.05 + (0.09 \times I)] \times C \times A \times 2.72 / 12$

Where: $P_{\rm J}$ unitless rainfall correction factor

0.9 for all of Tidewater, Virginia Ρ annual rainfall depth in inches =

43 for the Richmond Metropolitan Area

C flow weighted mean concentration of total phosphorus

0.26 mg/l for the entire County

average land cover condition of the Bay watershed **I**WATERSHED =

16 percent

Calculate the load produced by this project (LPROJECT):

$$L_{PROJECT}$$
 = [0.05 + (0.009 x $I_{PROJECT}$)] x 2.28 x $A_{PROJECT}$

 $2.166 \times A_{PROJECT}$ L_{PROJECT}

> 2.166 x _____ =

_____ pounds per year LPROJECT

Calculate the pollutant removal requirement (RR):

RR LPROJECT

RR _____ pounds per year =