WORKSHEET 3.03 - SITUATION THREE Compile existing site-specific data and determine existing site imperviousness (I_{EXIST}). For the purposes of these calculations, site area (A_{SITE}) is defined as the entire parcel. A_{EXIST} represents the actual amount of existing impervious cover on the site. | A _{SITE} | = | acres | |-------------------------------|---|---| | A _{EXIST} structures | = | acres | | parking lot | = | acres | | roadway | = | acres | | other | = | acres | | Total A _{EXIST} | = | acres | | I _{EXIST} | = | (Total A _{EXIST} ÷ A _{SITE}) x 100 | | I _{EXIST} | = | % (expressed in whole numbers) | Compile post-development site-specific data and determine post-development site imperviousness (I_{POST}). For the purposes of these calculations, site area (A_{SITE}) is defined as the entire parcel. A_{POST} represents the actual amount of impervious cover on the site once the proposed development is complete. | A _{SITE} | = | acres | |------------------------------|------|--| | A _{POST} structures | s = | acres | | parking lo | ot = | acres | | roadway | = | acres | | other | = | acres | | Total A _{POST} | = | acres | | I _{POST} | = | (Total A _{POST} ÷ A _{SITE}) x 100 | | I _{POST} | = | (expressed in whole numbers) | If $I_{\text{EXIST}} > 16\%$ and the existing impervious area is not served by a BMP, proceed with calculation of pollutant loadings. Otherwise, refer to Section 3.4 of the Manual for correct development situation determination. Calculate the pre and post-development pollutant loadings for the site using the Simple Method. $L = P \times P_J \times [0.05 + (0.09 \times I)] \times C \times A \times 2.72 / 12$ Where: P_J = unitless rainfall correction factor = 0.9 for all of Tidewater, Virginia P = annual rainfall depth in inches = 43 for the Richmond Metropolitan Area C = flow weighted mean concentration of total phosphorus = 0.26 mg/l for the entire County I_{WATERSHED} = average land cover condition of the Bay watershed = 16 percent Calculate the pre-development load (L_{PRE}): $L_{PRE} = [0.05+0.009 \text{ x } I_{EXIST})] \text{ x } 2.28 \text{ x } A_{SITE}$ =[0.05+(0.009 x ____)] x 2.28 x (____) L_{PRE} = _____ pounds per year Calculate the load based on 16% impervious cover (L_{16}): $L_{16} = [0.05+0.009 \times 16)] \times 2.28 \times A_{SITE}$ =[0.05+(0.009 x <u>16</u>)] x 2.28 x (<u>___</u>) L_{16} = _____ pounds per year Calculate the post-development load (L_{POST}): $L_{POST} = [0.05 + 0.009 \text{ x } I_{POST})] \text{ x } 2.28 \text{ x } A_{SITE}$ = [0.05 + (0.009 x ____)] x 2.28 x (____) L_{POST} = _____ pounds per year Calculate the pollutant removal requirement (RR). The removal requirement shall be the smaller of the following $RR = L_{POST} - (0.9 \times L_{PRE}) \qquad RR =$ = _____- (0.9 x _____) = _____ pounds per year $RR = L_{POST} - L_{16}$ = _____- RR = _____ pounds per year RR = _____ pounds per year