WORKSHEET 3.03 - SITUATION THREE

Compile existing site-specific data and determine existing site imperviousness (I_{EXIST}). For the purposes of these calculations, site area (A_{SITE}) is defined as the entire parcel. A_{EXIST} represents the actual amount of existing impervious cover on the site.

A _{SITE}	=	acres
A _{EXIST} structures	=	acres
parking lot	=	acres
roadway	=	acres
other	=	acres
Total A _{EXIST}	=	acres
I _{EXIST}	=	(Total A _{EXIST} ÷ A _{SITE}) x 100
I _{EXIST}	=	% (expressed in whole numbers)

Compile post-development site-specific data and determine post-development site imperviousness (I_{POST}). For the purposes of these calculations, site area (A_{SITE}) is defined as the entire parcel. A_{POST} represents the actual amount of impervious cover on the site once the proposed development is complete.

A _{SITE}	=	acres
A _{POST} structures	s =	acres
parking lo	ot =	acres
roadway	=	acres
other	=	acres
Total A _{POST}	=	acres
I _{POST}	=	(Total A _{POST} ÷ A _{SITE}) x 100
I _{POST}	=	(expressed in whole numbers)

If $I_{\text{EXIST}} > 16\%$ and the existing impervious area is not served by a BMP, proceed with calculation of pollutant loadings. Otherwise, refer to Section 3.4 of the Manual for correct development situation determination.

Calculate the pre and post-development pollutant loadings for the site using the Simple Method.

 $L = P \times P_J \times [0.05 + (0.09 \times I)] \times C \times A \times 2.72 / 12$

Where: P_J = unitless rainfall correction factor

= 0.9 for all of Tidewater, Virginia

P = annual rainfall depth in inches

= 43 for the Richmond Metropolitan Area

C = flow weighted mean concentration of total phosphorus

= 0.26 mg/l for the entire County

I_{WATERSHED} = average land cover condition of the Bay watershed

= 16 percent

Calculate the pre-development load (L_{PRE}):

 $L_{PRE} = [0.05+0.009 \text{ x } I_{EXIST})] \text{ x } 2.28 \text{ x } A_{SITE}$

=[0.05+(0.009 x ____)] x 2.28 x (____)

L_{PRE} = _____ pounds per year

Calculate the load based on 16% impervious cover (L_{16}):

 $L_{16} = [0.05+0.009 \times 16)] \times 2.28 \times A_{SITE}$

=[0.05+(0.009 x <u>16</u>)] x 2.28 x (<u>___</u>)

 L_{16} = _____ pounds per year

Calculate the post-development load (L_{POST}):

 $L_{POST} = [0.05 + 0.009 \text{ x } I_{POST})] \text{ x } 2.28 \text{ x } A_{SITE}$

= [0.05 + (0.009 x ____)] x 2.28 x (____)

 L_{POST} = _____ pounds per year

Calculate the pollutant removal requirement (RR). The removal requirement shall be the smaller of the following

 $RR = L_{POST} - (0.9 \times L_{PRE}) \qquad RR =$

= _____- (0.9 x _____)

= _____ pounds per year

 $RR = L_{POST} - L_{16}$

= _____-

RR = _____ pounds per year

RR = _____ pounds per year